Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Simulation to reality (sim2real) transfer from a dynamics and controls perspective usually involves re-tuning or adapting the designed algorithms to suit real-world operating conditions, which often violates the performance guarantees established originally. This work presents a generalizable framework for achieving reliable sim2real transfer of autonomy-oriented control systems using multimodel multiobjective robust optimal control synthesis, which lends well to uncertainty handling and disturbance rejection with theoretical guarantees. Particularly, this work is centered around a novel actuation-redundant scaled autonomous vehicle called Nigel, with independent all-wheel drive and independent all-wheel steering architecture, whose enhanced configuration space bodes well for robust control applications. To this end, we present the mechatronic design, dynamics modeling, parameter identification, and robust stabilizing as well as tracking control of Nigel using the proposed framework, with exhaustive experimentation and benchmarking in simulation as well as real-world settings.more » « less
-
Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of mechanical, electrical, electronic, computing and information subsystems. Furthermore, the individual constituent technologies employed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems. Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles. Particularly, we discuss leveraging multidisciplinary codesign practices along with virtual, hybrid and physical prototyping and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE Ecosystem. We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach.more » « less
-
Prototyping and validating hardware–software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt to develop such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single- and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path-planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things.more » « less
-
This paper presents a data-driven framework to discover underlying dynamics on a scaled F1TENTH vehicle using the Koopman operator linear predictor. Traditionally, a range of white, gray, or black-box models are used to develop controllers for vehicle path tracking. However, these models are constrained to either linearized operational domains, unable to handle significant variability or lose explainability through end-2-end operational settings. The Koopman Extended Dynamic Mode Decomposition (EDMD) linear predictor seeks to utilize data-driven model learning whilst providing benefits like explainability, model analysis and the ability to utilize linear model-based control techniques. Consider a trajectory-tracking problem for our scaled vehicle platform. We collect pose measurements of our F1TENTH car undergoing standard vehicle dynamics benchmark maneuvers with an OptiTrack indoor localization system. Utilizing these uniformly spaced temporal snapshots of the states and control inputs, a data-driven Koopman EDMD model is identified. This model serves as a linear predictor for state propagation, upon which an MPC feedback law is designed to enable trajectory tracking. The prediction and control capabilities of our framework are highlighted through real-time deployment on our scaled vehicle.more » « less
-
The engineering community currently encounters significant challenges in the development of intelligent transportation algorithms that can be transferred from simulation to reality with minimal effort. This can be achieved by robustifying the algorithms using domain adaptation methods and/or by adopting cutting-edge tools that help support this objective seamlessly. This work presents AutoDRIVE, an openly accessible digital twin ecosystem designed to facilitate synergistic development, simulation and deployment of cyber-physical solutions pertaining to autonomous driving technology; and focuses on bridging the autonomy-oriented simulation-to-reality (sim2real) gap using the proposed ecosystem. In this paper, we extensively explore the modeling and simulation aspects of the ecosystem and substantiate its efficacy by demonstrating the successful transition of two candidate autonomy algorithms from simulation to reality to help support our claims: (i) autonomous parking using probabilistic robotics approach; (ii) behavioral cloning using deep imitation learning. The outcomes of these case studies further strengthen the credibility of AutoDRIVE as an invaluable tool for advancing the state-of-the-art in autonomous driving technology.more » « less
-
The path-tracking control performance of an autonomous vehicle (AV) is crucially dependent upon modeling choices and subsequent system-identification updates. Traditionally, automotive engineering has built upon increasing fidelity of white- and gray-box models coupled with system identification. While these models offer explainability, they suffer from modeling inaccuracies, non-linearities, and parameter variation. On the other end, end-to-end black-box methods like behavior cloning and reinforcement learning provide increased adaptability but at the expense of explainability, generalizability, and the sim2real gap. In this regard, hybrid data-driven techniques like Koopman Extended Dynamic Mode Decomposition (KEDMD) can achieve linear embedding of non-linear dynamics through a selection of “lifting functions”. However, the success of this method is primarily predicated on the choice of lifting function(s) and optimization parameters. In this study, we present an analytical approach to construct these lifting functions using the iterative Lie bracket vector fields considering holonomic and non-holonomic constraints on the configuration manifold of our Ackermann-steered autonomous mobile robot. The prediction and control capabilities of the obtained linear KEDMD model are showcased using trajectory tracking of standard vehicle dynamics maneuvers and along a closed-loop racetrack.more » « less
An official website of the United States government
